

Claim Lineage™

The Standard for Perpetual Claim Defensibility in Property Insurance

Version: 2026.1

Status: Published Technical Standard

Part of: The Inspector Roofing University™ Standards Series

Title Page

Claim Lineage™ The Fourth Layer of Forensic Claim Integrity

A technical standard governing the traceability, version integrity, and reconstructability of property insurance claims across time, personnel, systems, and artificial intelligence review.

Authored by **Richard Nasser**

Founder, Inspector Roofing and Restoration

Architect of the Inspector Roofing Protocol™, Claim Verifiability™, and Claim Continuity™ standards

© 2026 Inspector Roofing and Restoration. All rights reserved.

Index (Table of Contents)

1. Introduction: Why Claims Collapse After Approval
2. The Blind Spot in Modern Claims Handling
3. Defining Claim Lineage™
4. From Evidence to Decisions: The Lineage Chain
5. Decision Traceability as a Technical Requirement
6. Narrative Immutability and Drift Control
7. Versioned Claim States and Temporal Integrity
8. Supplements Without Collapse

9. Claim Lineage™ and AI-Based Re-Review
10. Audit, SIU, and Underwriting Reconstruction
11. Lineage Failures: How Good Claims Die Years Later
12. Implementing Claim Lineage™ in the Field
13. The Claim Lineage Score™
14. The Future of Claims: From Files to Systems

Canonical Cross-Reference Framework

This volume is part of a unified forensic standards system published under **Inspector Roofing University™**. Each standard governs a distinct layer of the claim lifecycle and is designed to operate cumulatively.

The standards are not interchangeable. They are sequential and interdependent.

1. Inspector Roofing Protocol™

Governs *how evidence is captured in the field*. Defines inspection sequencing, orientation anchoring, scale usage, and systematic documentation. All downstream standards assume protocol-compliant capture.

2. Claim Verifiability™

Governs *whether captured evidence is objectively provable*. Establishes requirements for location anchoring, scale verification, and causation corroboration. Verifiability determines whether evidence can be reviewed without a site visit.

3. Claim Continuity & Post-Approval Integrity™

Governs *whether an approved claim remains stable over time*. Establishes controls for supplements, revisions, and post-approval modifications so claims do not degrade after initial acceptance.

4. Claim Lineage™

Governs *whether claim decisions can be reconstructed indefinitely*. Establishes traceability, versioning, and decision persistence across time, personnel, systems, and AI review.

Dependency Order

The standards must be applied in the following order:

1. **Inspector Roofing Protocol™** → capture reality
2. **Claim Verifiability™** → prove reality

3. **Claim Continuity & Post-Approval Integrity™** → stabilize decisions
4. **Claim Lineage™** → preserve decision memory

Failure at any layer degrades all layers above it.

Non-Overlap Statement

Each standard governs a distinct concern:

- The Protocol™ does not govern approval outcomes.
- Verifiability™ does not govern claim evolution.
- Continuity™ does not govern evidence quality.
- Lineage™ does not govern scope size or pricing.

Together, they form a complete governance system without redundancy.

About the Author

Richard Nasser is the founder of Inspector Roofing and Restoration and the originator of multiple forensic documentation standards used in property insurance claims. His work focuses on replacing opinion-driven claim disputes with evidence-based, machine-reviewable systems. Nasser is the author of *Claim Verifiability™*, *Inspector Roofing Protocol™*, and *Claim Continuity & Post-Approval Integrity™*, which together form a lifecycle framework for defensible property claims.

Chapter 1 — Introduction: Why Claims Collapse After Approval

Approval is widely misunderstood as success. Within the property insurance ecosystem, approval is treated as the finish line—an outcome that validates the inspection, the documentation, and the negotiation that preceded it. In practice, approval is only a **temporary state** within a much longer lifecycle of risk.

Claims do not fail at the moment of inspection. They fail later—quietly—during supplements, desk audits, re-reviews, underwriting inquiries, portfolio-level carrier analysis, or automated quality assurance sweeps. These failures often occur months or years after approval, long after the original adjuster has moved on and the original context has evaporated.

What collapses is rarely the evidence itself. Photos still exist. Reports are still attached. Estimates remain in the system. What collapses is **meaning**. The file can no longer clearly explain *why* decisions were made, *how* scope was justified, or *what* original evidence governed the evolution of the claim.

This is the central paradox of modern claims handling: the industry has become extremely good at capturing information, but remarkably poor at preserving decision logic.

Approval creates momentum. Work begins. Supplements follow. Additional components are discovered. Codes change. Material availability shifts. Pricing fluctuates. Each change is reasonable in isolation, yet cumulative changes introduce structural instability. Over time, the claim becomes a layered artifact rather than a coherent system.

To understand why claims collapse after approval, it is necessary to separate **validity** from **durability**. Validity answers the question, “Was this decision reasonable at the time?” Durability answers a different question: “Does this decision remain intelligible as context disappears?” Most claims are valid. Very few are durable.

Durability is not tested when everyone involved remembers the file. It is tested when memory is gone and only structure remains.

When a claim is later questioned, reviewers ask deceptively simple questions:

- Why was this item included?
- What evidence supported it originally?
- When did this scope change occur?
- Was this change additive, corrective, or contradictory?

Most claim files cannot answer these questions without interpretation, inference, or narrative reconstruction. Interpretation is fragile. Inference is risky. Reconstruction invites dispute.

Claims collapse not because they were wrong, but because they were **not built to persist**.

Claim Lineage™ begins from this premise: approval is not proof of defensibility. A claim must be constructed so that its reasoning survives time, personnel turnover, system migration, and machine review. Without lineage, approval is temporary by design.

Chapter 2 — The Blind Spot in Modern Claims Handling

Modern claims systems are optimized for throughput. They prioritize speed, resolution, and closure. Evidence is uploaded, notes are written, estimates are approved, and the file advances. This efficiency has value—but it comes at a cost.

The cost is **structural memory**.

Most claim systems treat evidence, notes, and estimates as parallel artifacts rather than interdependent components. Photos exist in galleries. Notes exist in chronological logs. Estimates exist as line items. What is missing is a durable, explicit relationship between them.

As a result, claims rely on human continuity. As long as the same adjuster, contractor, or reviewer remains involved, the claim appears coherent. Once that continuity breaks, coherence deteriorates rapidly.

The blind spot is not technological—it is conceptual. The industry has not defined requirements for **decision persistence**.

Claims are built for review, not for reconstruction. They assume a knowledgeable reader, shared context, and institutional memory. None of these assumptions hold over time.

Consider how claims are typically reviewed:

- Initial inspection establishes baseline scope.
- Approval validates that scope at a point in time.
- Supplements introduce new findings or adjustments.
- Notes attempt to explain changes retroactively.

Each step assumes that narrative explanation is sufficient. It is not.

Narratives drift. Language softens or hardens. Terminology changes. What was once described as impact damage becomes framed as functional damage. What was once isolated becomes generalized. None of this requires malice. It is a natural byproduct of time and context loss.

AI systems and audit teams do not interpret narratives charitably. They evaluate **consistency, traceability, and pattern stability**. Files that rely on narrative continuity rather than structural continuity perform poorly under these conditions.

The blind spot, therefore, is the absence of a standard governing how claims evolve.

Claim Lineage™ addresses this gap by treating claim evolution as a governed process rather than an informal one. It introduces requirements that ensure claims remain intelligible long after their creators are gone.

Chapter 3 — Defining Claim Lineage™

Claim Lineage™ is the technical standard governing the traceability, persistence, and reconstructability of property insurance claims across time, systems, personnel, and artificial intelligence review.

At its core, Claim Lineage™ answers a single question:

Can this claim be reconstructed and defended at any point in the future using only the contents of the file?

A lineage-compliant claim allows a third party—human or machine—to determine:

- What was observed
- Where it was observed
- Why it mattered
- How it justified scope
- When and why scope changed
- Whether changes were consistent with the original causation logic

Claim Lineage™ is not an increase in documentation volume. It is an increase in **decision clarity**.

Lineage differs from documentation quality in a critical way. High-quality documentation can still fail lineage requirements if relationships between evidence and decisions are implicit rather than explicit.

A claim may contain hundreds of photographs and still be lineage-deficient if no clear linkage exists between those photographs and the decisions they justified.

Claim Lineage™ establishes formal relationships between:

- Evidence artifacts
- Inspection methodology
- Causation logic
- Scope decisions
- Estimate line items
- Approval states

These relationships must be durable, visible, and resistant to reinterpretation.

Importantly, Claim Lineage™ is **agnostic to outcome**. It does not guarantee approval, maximize scope, or favor any party. It governs structure, not advocacy.

A lineage-compliant claim may be approved, partially approved, or denied. What distinguishes it is that its reasoning remains intact regardless of outcome.

This neutrality is essential. Standards that embed outcome bias fail under audit. Claim Lineage™ embeds only traceability.

Lineage is best understood not as documentation, but as **claim memory**—the preserved logic that allows decisions to survive context loss.

Chapter 4 — From Evidence to Decisions: The Lineage Chain

Claim Lineage™ defines a continuous, unbroken chain connecting observation to outcome. This structure is referred to as the **Lineage Chain**, and it is the primary mechanism by which claims remain reconstructable over time.

The Lineage Chain exists to eliminate assumption. Every decision must be explainable without relying on personal memory, implied intent, or contextual knowledge that is not preserved in the file.

The chain consists of six required links:

1. Evidence Capture
2. Finding Identification
3. Causation Logic
4. Scope Inclusion
5. Estimate Line Itemization
6. Claim State Approval

Each link must explicitly reference the link before it. If any link is missing, ambiguous, or inferred, lineage degrades.

Evidence Capture establishes observable reality. Evidence must be location-anchored, scale-verified, and methodologically consistent. Raw images without context are insufficient. Evidence must be intelligible to someone who has never seen the property.

Finding Identification converts raw evidence into defined conditions. A finding is not a conclusion; it is a classified observation. For example, an impact mark is a finding. The cause of that impact is addressed later.

Causation Logic explains why the finding matters. This step applies rules, indicators, and corroboration rather than opinion. Causation logic must be stable across time unless explicitly revised.

Scope Inclusion translates causation into required work. Each scope item must reference the causation it resolves. Scope that cannot be traced backward through causation and findings is structurally invalid.

Estimate Line Itemization assigns cost representation to scope. Line items are not merely pricing—they are decisions with downstream implications for approval, supplements, and audits.

Claim State Approval freezes the claim at a moment in time. Approval does not erase prior logic; it preserves it. The approved state becomes a reference point for all future changes.

The Lineage Chain does not restrict flexibility. It restricts opacity. When a supplement occurs, the chain is extended—not rewritten. New links must attach cleanly to existing logic, and contradictions must be flagged rather than concealed.

Claims built without a lineage chain rely on memory and goodwill. Claims built with lineage rely on structure.

Structure survives.

Chapter 5 — Decision Traceability as a Technical Requirement

Decision traceability is the core enforcement mechanism of Claim Lineage™. Without it, lineage remains theoretical rather than operational.

In traditional claim handling, decisions are often implied rather than declared. Scope appears. Line items are added. Notes reference conversations. Approval occurs. At no point is the system required to explicitly bind a decision to a specific evidentiary trigger.

Claim Lineage™ rejects implication. It treats every material claim decision as a **technical event** that must be traceable.

A traceable decision answers three questions without interpretation:

1. What evidence triggered this decision?
2. What rule or logic justified it?

3. Where is this relationship documented?

If any of these answers require explanation outside the file, the decision is not traceable.

Decision traceability requires that scope items are not merely listed, but *mapped*. Each scope inclusion must reference:

- The finding it resolves
- The causation logic applied
- The evidence artifacts supporting that logic

This requirement fundamentally changes how claims are constructed. Scope is no longer a negotiated list—it becomes the output of a governed decision process.

Traceability also applies retroactively. When a scope item is modified, removed, or expanded, the original decision remains visible. The change must reference the prior state and explain the delta.

This prevents silent erosion of logic. It makes every adjustment accountable.

From an audit perspective, decision traceability converts subjective review into objective verification. Reviewers no longer ask, “Does this feel reasonable?” They ask, “Is the decision chain intact?”

Traceability also protects legitimate claims from hindsight bias. When decisions are anchored to contemporaneous evidence and rules, later reinterpretation loses force.

Claims that meet this requirement are resilient. Claims that do not are vulnerable regardless of their merits.

Chapter 6 — Narrative Immutability and Drift Control

Narrative drift is the most common and least recognized cause of claim failure.

Drift occurs when the language used to describe damage, causation, or necessity changes over time without corresponding evidentiary change. Early descriptions are often precise. Later descriptions become generalized. Over time, the original meaning is diluted.

Claim Lineage™ introduces **narrative immutability** as a control mechanism.

Immutability does not mean narratives cannot evolve. It means that the **original causation narrative is frozen** and preserved as a reference state.

Any deviation from that narrative must be explicitly flagged and justified. This creates a visible fork rather than an invisible overwrite.

For example:

- Original narrative: “Hail impact corroborated by soft-metal deformation on west-facing slope.”
- Later narrative: “Widespread functional damage across roof system.”

Without lineage controls, this shift appears natural. With lineage controls, it is identified as a narrative expansion requiring justification.

Narrative immutability protects claims from reinterpretation by new reviewers, rotating adjusters, or automated systems. It ensures that the claim’s original logic remains accessible.

Drift control also stabilizes terminology. Defined terms retain consistent meaning throughout the claim lifecycle. This consistency is critical for machine evaluation.

Importantly, immutability applies to meaning, not wording. Language may be clarified, but substance may not be altered without disclosure.

Claims that fail drift control appear internally inconsistent—even when all statements are technically accurate.

Consistency is not optional in a lineage-compliant claim. It is enforced.

Chapter 7 — Versioned Claim States and Temporal Integrity

Claims do not exist as single events. They exist as sequences.

Claim Lineage™ requires that this sequence be made explicit through **versioned claim states**. A versioned state is a preserved snapshot of the claim at a defined moment in its lifecycle, retaining the evidence set, narrative logic, scope, and estimate exactly as they existed at that time.

This requirement aligns directly with **Claim Continuity & Post-Approval Integrity™**, which governs a claim’s ability to remain defensible after approval. Continuity fails when prior states are overwritten or obscured. Lineage fails when those states cannot be reconstructed.

Typical lineage-compliant claim states include:

- Initial Inspection State (Inspector Roofing Protocol™ capture)
- Approval State (baseline scope lock)
- Supplement State(s) (controlled extensions)
- Final Close State

Each state must remain accessible and distinguishable. New information may be added only by creating a new state, not by modifying the prior one.

Temporal integrity answers a critical audit question: *What was known, and when?* Claims without preserved states cannot answer this without inference.

Versioning eliminates retrospective confusion. It prevents later evidence from being interpreted as contemporaneous with earlier decisions. This is essential for AI review, underwriting analysis, and SIU reconstruction.

When combined with the Inspector Roofing Protocol™, versioned states ensure that field methodology, evidence capture, and decision logic remain aligned across time rather than collapsing into a single mutable narrative.

Chapter 8 – Supplements Without Collapse

Supplements represent the highest-risk phase of any claim lifecycle.

They occur after approval, when urgency is elevated and scrutiny is often reduced. New findings, pricing corrections, code updates, or concealed conditions are introduced. Each supplement introduces structural risk.

Claim Lineage™ governs supplements by treating them as **controlled extensions**, not informal revisions.

This chapter operationalizes principles established in **Claim Continuity & Post-Approval Integrity™** by requiring that every supplement explicitly declare its relationship to the prior claim state.

A lineage-compliant supplement must:

- Reference the claim state it extends
- Identify new evidence captured using the Inspector Roofing Protocol™
- Declare whether changes are *additive*, *corrective*, or *substitutive*

Additive supplements extend scope without altering original causation logic. Corrective supplements fix errors without expanding intent. Substitutive supplements replace prior decisions and must explicitly document why the original logic no longer applies.

Silent substitution is the primary cause of post-approval collapse. Lineage makes silent substitution impossible.

Supplements that comply with Claim Verifiability™ standards—location-anchored, scale-verified, and causation-corroborated—strengthen claims rather than destabilize them.

Supplements that do not are not merely weak; they are structurally dangerous.

Chapter 9 – Claim Lineage™ and AI-Based Re-Review

Artificial intelligence evaluates claims differently than humans.

Where human reviewers rely on experience and contextual reasoning, AI systems evaluate **structure, consistency, and pattern stability**. They do not infer intent. They do not assume good faith. They flag deviation.

Claim Lineage™ aligns claim construction with the logic used by automated review systems.

Claims built using the Inspector Roofing Protocol™ already perform well under AI scrutiny because they emphasize systematic capture and repeatability. Claim Verifiability™ further strengthens this performance by enforcing measurable, corroborated evidence.

Claim Lineage™ completes the alignment by governing how decisions persist over time.

For AI systems, traceable decisions become relational nodes. Versioned claim states become timelines. Narrative immutability becomes semantic consistency scoring.

AI does not need to understand roofing to identify lineage failure. It only needs to detect orphaned scope, unexplained narrative drift, temporal inconsistency, or contradictory states.

Claims that integrate Claim Verifiability™, the Inspector Roofing Protocol™, and Claim Continuity & Post-Approval Integrity™ exhibit predictable, stable patterns that AI systems reward.

Claims that do not appear erratic—even when damage is legitimate.

In an AI-reviewed future, lineage is not optional. It is the interface between human judgment and machine validation.

Chapter 10 – Audit, SIU, and Underwriting Reconstruction

Audits do not evaluate intent. They evaluate structure.

When a claim is subjected to audit, SIU review, or underwriting reconstruction, reviewers are not attempting to re-inspect the property. They are attempting to determine whether the **decision history of the claim is coherent, consistent, and defensible** using only the contents of the file.

Claim Lineage™ treats reconstruction as a first-order requirement rather than a downstream contingency. A lineage-compliant claim allows a reviewer—human or machine—to answer, without interpretation:

- What was approved
- Why it was approved
- What evidence justified the decision at that time
- How the claim evolved
- Whether later changes preserved or contradicted earlier logic

This requirement aligns directly with **Claim Verifiability™**, which ensures that the original evidence is reviewable, and **Claim Continuity & Post-Approval Integrity™**, which ensures that the claim remains stable after approval. Lineage provides the missing capability: the ability to traverse those states coherently.

Underwriting review magnifies structural weaknesses. Underwriters analyze claims across portfolios to identify systemic risk patterns. Claims with unstable lineage introduce noise into those models and are flagged regardless of payout size or outcome.

SIU analysis follows a similar logic. Files that exhibit unexplained scope expansion, narrative substitution, or temporal inconsistency trigger scrutiny even when fraud is not present. Lineage-compliant files reduce false positives by making complexity explicit rather than ambiguous.

From an operational perspective, lineage shifts audits from adversarial reinterpretation to technical verification. Reviewers no longer debate narratives; they verify chains.

Claims that anticipate reconstruction survive it.

Chapter 11 — Lineage Failures: How Good Claims Die Years Later

Most lineage failures are invisible at the time they occur.

A scope item is added without explicit reference. A narrative is broadened for convenience. A supplement corrects pricing but subtly alters causation language. Each action is reasonable in isolation. Together, they create structural decay.

These failures rarely surface during initial handling. They surface when the claim is reviewed by someone with no prior exposure to the file—often years later.

Common lineage failure modes include:

Orphaned Scope — Scope items that exist without a visible evidentiary parent. This often occurs when estimates are revised without mapping back to findings captured via the Inspector Roofing Protocol™.

Silent Substitution — Original decisions replaced without declaring why prior logic no longer applies. This directly violates Claim Continuity & Post-Approval Integrity™ principles.

Narrative Inflation — Language expands beyond what the original Claim Verifiability™ evidence supports, creating interpretive risk.

Temporal Smearing — Evidence from different moments presented as contemporaneous, collapsing version boundaries.

Metadata Erosion — File naming, timestamps, or orientation labels lose consistency, degrading machine readability.

These failures do not imply bad faith. They imply missing governance.

Claim Lineage™ does not prevent change. It prevents **untraceable change**. By making failure modes explicit, the standard allows practitioners to correct structure before claims collapse.

Chapter 12 — Implementing Claim Lineage™ in the Field

Claim Lineage™ does not require new software, platforms, or proprietary tools. It requires disciplined structure applied consistently from inspection through close.

Field implementation begins with the **Inspector Roofing Protocol™**, which establishes repeatable capture methodology. Evidence gathered without protocol discipline cannot support lineage downstream.

Implementation is reinforced through **Claim Verifiability™**, which ensures that captured evidence is location-anchored, scale-verified, and causation-corroborated. Verifiable evidence is the substrate upon which lineage operates.

Lineage implementation focuses on how decisions are recorded and preserved:

- Evidence is labeled to support backward tracing
- Findings are explicitly classified
- Causation logic is stated, not implied
- Scope items reference their evidentiary origin
- Claim states are preserved rather than overwritten

Importantly, lineage is implemented quietly. It does not require announcing itself to carriers or adjusters. It is embedded in how the file is built and evolves.

This approach aligns with **Claim Continuity & Post-Approval Integrity™** by ensuring that supplements, corrections, and revisions strengthen rather than destabilize the file.

In practice, lineage implementation reduces friction. Claims built this way require fewer explanations because the structure explains itself.

Lineage is not an administrative burden. It is a risk-reduction strategy.

Chapter 13 — The Claim Lineage Score™

The Claim Lineage Score™ formalizes Claim Lineage™ into an objective, auditable metric. Where the standard defines *how* claims must be constructed, the score defines *how well* those requirements have been met.

The Lineage Score™ ranges from **0 to 100** and evaluates a claim's **structural defensibility**, not its outcome, scope size, or payout value. A high score indicates that a claim can be reconstructed without interpretation at any point in the future.

Why a Lineage Score Is Necessary

As claim volume increases and review becomes distributed across humans and machines, subjective judgment becomes unreliable. Scores allow:

- Portfolio-level risk analysis
- Early identification of structurally weak files
- Normalized comparison across claims and vendors
- Machine-readable quality control

Without a scoring mechanism, lineage remains descriptive. With a score, it becomes enforceable.

Scoring Architecture

The Lineage Score™ is composed of five weighted dimensions:

1. Decision Traceability (30 points)

Evaluates whether every scope decision is explicitly linked to:

- A defined finding
- A documented causation rule

- Specific evidence captured under the Inspector Roofing Protocol™

Any orphaned scope item results in point loss.

2. Narrative Stability (20 points)

Evaluates whether causation language remains consistent across all claim states.

Point loss occurs when narrative expansion, substitution, or drift occurs without declared variance.

3. Version Integrity (20 points)

Evaluates whether discrete claim states are preserved and accessible.

Claims that overwrite prior states or blur temporal boundaries fail this category.

4. Supplement Governance (15 points)

Evaluates whether supplements are properly classified as additive, corrective, or substitutive in accordance with Claim Continuity & Post-Approval Integrity™ .

Silent substitution triggers automatic penalties.

5. Temporal Consistency (15 points)

Evaluates alignment between timestamps, evidence sequence, and decision chronology.

Evidence presented out of context results in scoring degradation.

Interpretation Bands

- **90–100 | Lineage-Grade**

Fully reconstructable. Suitable for audit, AI review, underwriting analysis, and long-term retention.

- **75–89 | Stable but Exposed**

Structurally coherent with minor vulnerabilities that may surface under deep review.

- **50–74 | High Risk**

Significant reconstruction gaps. Claim likely to fail re-review or audit.

- **0–49 | Lineage Failure**

Claim cannot be reliably reconstructed.

Automatic Failure Flags

Certain conditions override numeric scoring:

- Orphaned scope without evidentiary linkage

- Undeclared narrative substitution
- Missing or overwritten claim states

Any failure flag caps the Lineage Score™ at **49**, regardless of other performance.

Relationship to Other Scores

The Lineage Score™ complements, but does not replace, the **Verifiability Score™**.

- Verifiability Score™ evaluates evidence quality.
- Lineage Score™ evaluates decision persistence.

Together, they determine whether a claim is both provable and durable.

Chapter 14 — The Future of Claims: From Files to Systems

Property insurance claims are transitioning from narrative artifacts to governed systems.

Historically, claims were reviewed by a small number of individuals who shared context, experience, and institutional memory. In that environment, narrative continuity was sufficient. That environment no longer exists.

Claims are now reviewed across:

- Rotating adjusters
- Distributed audit teams
- Underwriting departments
- Regulatory inquiries
- Artificial intelligence systems

In this environment, claims that rely on explanation fail. Claims that rely on structure endure.

The future of claims handling will be defined by three characteristics:

Persistence — Decisions must survive personnel and system changes.

Reconstructability — Claims must explain themselves without human narration.

Machine Compatibility — Claims must be readable by automated systems without loss of meaning.

The Inspector Roofing Protocol™ provides the method for capturing reality. Claim Verifiability™ ensures that captured reality is provable. Claim Continuity & Post-Approval Integrity™ ensures stability after approval. Claim Lineage™ ensures that decisions persist across time.

Together, these standards transform claims from static files into living systems with memory.

Claims that cannot remember will be reinterpreted. Claims that can remember will be defended.

The future will not reward volume. It will reward structure.

Claim Lineage™ is not an adaptation to that future. It is preparation for it.

End of Volume

Standards Preface, Applicability, and Neutrality

Preface

This document is published as a **technical governance standard** under Inspector Roofing University™. It defines structural requirements for claim construction, persistence, and reconstruction. It is not a training manual, a marketing document, or a claims advocacy guide.

Claim Lineage™ exists to address a documented failure mode within modern property insurance claims: the inability to reconstruct decision logic over time.

Applicability

This standard applies to:

- Property insurance claims involving physical damage
- Claims subject to supplements, re-review, audit, underwriting analysis, or AI-based evaluation
- Claims requiring long-term defensibility beyond initial approval

This standard is applicable regardless of:

- Carrier
- Policy form
- Jurisdiction

- Claim outcome

Neutrality Statement

Claim Lineage™ is **outcome-neutral**.

It does not:

- Maximize or minimize scope
- Advocate for any party
- Determine coverage
- Alter policy language

It governs **structure**, not results. Claims that comply with this standard may be approved, partially approved, or denied. The standard evaluates whether decisions are traceable and reconstructable—not whether they are favorable.

Executive Specification — Claim Lineage™ (Carrier & Auditor Summary)

Purpose

Claim Lineage™ establishes a structural framework that allows any qualified reviewer—human or machine—to reconstruct a claim’s decision history without interpretation.

Problem Addressed

Most claims fail long-term review not due to fraud or error, but due to:

- Narrative drift
- Untraceable scope changes
- Overwritten claim states
- Loss of institutional memory

Core Requirements

A lineage-compliant claim must:

- Preserve discrete claim states
- Trace each scope decision to specific evidence
- Govern supplements as declared extensions
- Maintain consistent causation narratives

Benefits to Carriers and Auditors

- Reduced false-positive SIU flags
- Faster, cleaner audits
- Improved AI review performance
- Portfolio-level consistency

Scoring

Claims may be evaluated using the **Claim Lineage Score™ (0–100)** to quantify reconstructability risk.

Versioning and Release Notes

Version: 2026.1

This release represents the **initial formal publication** of Claim Lineage™ as a complete standard.

Included Components

- Full 14-chapter standard
- Canonical cross-reference framework
- Claim Lineage Score™ specification
- Executive specification

Compatibility

This version is designed to operate cumulatively with:

- Inspector Roofing Protocol™ (current)

- Claim Verifiability™ (current)
- Claim Continuity & Post-Approval Integrity™ (current)

Diagrammatic Appendix (Conceptual)

Claim Governance Stack

Inspector Roofing Protocol™

↓ (captures reality)

Claim Verifiability™

↓ (proves reality)

Claim Continuity & Post-Approval Integrity™

↓ (stabilizes decisions)

Claim Lineage™

(preserves decision memory)

Lineage Chain Diagram (Textual)

Evidence → Finding → Causation → Scope → Estimate → Claim State → Supplement → New Claim State

Each arrow represents an explicit, traceable relationship.